Cellular and Integrative Physiology

Julia Saifetiarova, Ph.D.

Postdoctoral Fellow

Personal Statement:

Lab Affiliation:
Manzoor Bhat, M.S., Ph.D.


I obtained my PhD degree in Physiology from the Institute of Developmental Biology RAS, Moscow, Russia. My research was mainly focused on molecular and cellular mechanisms of endocrine regulation of peripheral targets by catecholamines deriving from the brain to the general circulation before the blood-brain barrier formation.
The special area of my interests covers such problems of developmental neuroscience as neurogenesis, neuronal migration, synaptogenesis, signal transduction pathways, blood-brain barrier formation and its permeability, process of axonal myelination and its influence on neural circuits.
I am excited to be part of Professor  Bhat’s Lab, where I have an opportunity to continue my research in developmental neuroscience. As a postdoctoral fellow in the Bhat Lab, I am interested in molecular mechanisms by which complex axon-glial interactions develop during mammalian ontogeny. Using mouse as a model system, we study mechanisms of how axon-glial interactions are orchestrated and axonal domains are organized. Our studies will allow a better understanding of the mechanisms of demyelinating diseases, and lead to better strategies for early diagnosis and treatment of such diseases.


Saifetiarova, J., Liu, X., Taylor, A.M., Li, J. and Bhat, M.A. (2017). Axonal Domain Disorganization in Caspr1 and Caspr2 Mutant Myelinated Axons Affects Neuromuscular Junction Integrity Leading to Muscle Atrophy. J. Neurosci. Res. DOI: 10.1002/jnr.24052
Saifetyarova, J., Taylor, A.M., and Bhat, M.A. (2017) Early and Late Loss of the Cytoskeletal Scaffolding Protein, Ankyrin G Reveals its Role in Maturation and Maintenance of Nodes of Ranvier in Myelinated Axons. J Neurosci. 2661-16.2017  (featured on the Cover)
Taylor, A.M., Saifetyarova, J., and Bhat, M.A. (2017) Postnatal Loss of Neurofascin 186 and Neurofascin 155 Differentially Affects the Maintenance of Nodes of Ranvier and Health of Myelinated Axons. Front. Cell. Neurosci. 11:11. doi: 10.3389/fncel.2017.00011 
Saifetyarova Y.Y., Melnikova V.I., Sapronova A.Y., Volina E.V., Ugrumov M.V. (2014). The developing brain as an endocrine source of norepinephrine in the blood. Doklady Biological Sciences. V. 454(1), 5-8.
Zubova Y.O., Saifetyarova Y.Y., Sapronova A.Y., Ugryumov M.V. (2014). The chronic inhibition of dopamine synthesis in the brain of neonatal rats as an evidence of its endocrine function in ontogeny. Doklady Biological Sciences. V. 454(1), P.12-15.
Saifetyarova Y.Y., Degtyareva E.A., Sapronova A.Ya., Ugrumov M.V. Endocrine function of dopaminergic neurons in the neonatal rat brain // Neurochemical Journal. 2011. V. 5(3). P.169-175.
Ugrumov M.V., Saifetyarova J.Y., Lavrentieva A.V., Sapronova A.Y. Developing brain as an endocrine organ: secretion of dopamine // Mol. Cell. Endocrinol. 2012. V. 348(1). P.78-86.
Saifetyarova Y.Y., Sapronova A.Y., Ugrumov M.V. Endocrine function of dopaminergic neurons of the whole rat brain in ontogeny: control of prolactin secretion. Doklady Biological Sciences. 2012. V. 443, P. 81-83.